Die Geburt eines sehr weit entfernten Galaxienhaufens aus dem frühen Universum, #Max #Planck Institut für #Astronomie
Astronomen haben mithilfe des Atacama Large Millimeter Submillimeter Array (ALMA), an dem die #ESO beteiligt ist, ein großes Reservoir an heißem Gas in dem sich noch bildenden Galaxienhaufen um die #Spiderweb Galaxie entdeckt. Es handelt sich dabei um den bisher am weitesten entfernten Nachweis von solch heißem Gas. Galaxienhaufen gehören zu den größten bekannten Objekten im Universum. Dieses Ergebnis, das heute in Nature veröffentlicht wurde, zeigt, wie früh diese Strukturen entstehen.
Wie der Name schon sagt, beherbergen Galaxienhaufen eine große Anzahl von Galaxien – manchmal sogar Tausende. Außerdem enthalten sie ein enormes »Intracluster Medium« (ICM) aus Gas, das den Raum zwischen den Galaxien des Haufens durchzieht. Dieses Gas wiegt in der Tat erheblich schwerer als die Galaxien selbst. Ein großer Teil der Physik von Galaxienhaufen ist gut verstanden, aber es gibt nur wenige Beobachtungen der frühesten Phasen der Entstehung des ICM.
Bisher wurde das ICM nur in nahen, voll entwickelten Galaxienhaufen untersucht. Die Entdeckung der ICM in weit entfernten Protoclustern, das heißt, sich noch bildenden Galaxienhaufen, würde es den #Astronomen ermöglichen, diese Haufen in den frühen Stadien ihrer Entstehung zu erforschen. Ein Team unter der Leitung von Luca Di Mascolo, Erstautor der Studie und Forscher an der Universität von Triest, Italien, wollte das ICM in einem Protocluster aus der Frühphase des Universums nachweisen.
Galaxienhaufen sind so massereich, dass sie Gas zusammenführen können, das sich aufheizt, wenn es in Richtung des Haufens fällt. »Kosmologische Simulationen haben die Anwesenheit von heißem Gas in Protoclustern seit mehr als einem Jahrzehnt vorhergesagt, aber es fehlte die Bestätigung durch Beobachtungen«, erklärt Elena Rasia, Forscherin am Italienischen Nationalen Institut für Astrophysik (INAF) in Triest, Italien, und Mitautorin der Studie. »Die Suche nach einer solchen wichtigen experimentellen Bestätigung hat uns dazu veranlasst, einen der vielversprechendsten Protocluster Kandidaten sorgfältig auszuwählen.« Es handelt sich um den Spiderweb Protocluster, der zu einer Zeit entstand, als das Universum erst 3 Milliarden Jahre alt war. Obwohl es sich um den am intensivsten untersuchten Protohaufen handelt, ist die Existenz des ICM schwer nachzuweisen. Die Entdeckung eines großen Reservoirs an heißem Gas im Spiderweb Protohaufen würde darauf hindeuten, dass das System auf dem Weg ist, ein echter, langlebiger Galaxienhaufen zu werden, anstatt sich aufzulösen.
Di Mascolos Team entdeckte das ICM des Spiderweb Protohaufens durch den so genannten thermischen Sunyaev-Zeldovich (SZ) Effekt. Dieser Effekt tritt auf, wenn das Licht aus dem kosmischen Mikrowellenhintergrund, die Reliktstrahlung aus dem #Urknall, durch das ICM dringt. Wenn dieses Licht mit den sich schnell bewegenden Elektronen in dem heißen Gas reagiert, gewinnt es ein wenig Energie und seine Farbe oder Wellenlänge ändert sich leicht. »Bei den richtigen Wellenlängen erscheint der SZ Effekt daher als Schatteneffekt eines Galaxienhaufens auf dem kosmischen Mikrowellenhintergrund«, erklärt Di Mascolo.
Durch die Messung dieser Schatten auf dem kosmischen Mikrowellenhintergrund können Astronomen daher das heiße Gas orten, seine Masse schätzen und seine Form kartieren. »Dank seiner unvergleichlichen Auflösung und Empfindlichkeit ist ALMA die einzige Einrichtung, die derzeit in der Lage ist, eine solche Messung für die entfernten Vorläufer massereicher Sternhaufen durchzuführen«, sagt Di Mascolo.
Sie stellten fest, dass der Spiderweb Protohaufen ein riesiges Reservoir an heißem Gas mit einer Temperatur von einigen 10 Millionen Grad Celsius enthält. Zuvor war in diesem Protohaufen kaltes Gas entdeckt worden, aber die Masse des heißen Gases, das in dieser neuen Studie gefunden wurde, übersteigt sie um ein Tausendfaches. Dieser Befund zeigt, dass sich der Spiderweb Protohaufen in etwa 10 Milliarden Jahren zu einem massereichen Galaxienhaufen entwickeln und seine Masse um mindestens das Zehnfache erhöhen wird.
Tony Mroczkowski, Mitautor der Studie und Forscher bei der ESO, erklärt: »Dieses System weist enorme Kontraste auf. Die heiße thermische Komponente wird einen Großteil der kalten Komponente zerstören, während sich das System entwickelt, und wir sind Zeugen eines kritischen Ãœbergangs.« Er kommt zu dem Schluss, dass »die Beobachtungen die seit langem bestehenden theoretischen Vorhersagen über die Entstehung der größten gravitativ gebundenen Objekte im Universum bestätigen.«
Diese Ergebnisse tragen dazu bei, den Grundstein für Synergien zwischen ALMA und dem kommenden Extremely Large Telescope (ELT) der ESO zu legen, das »die Untersuchung von Strukturen wie dem Spiderweb revolutionieren wird«, sagt Mario Nonino, ein Mitautor der Studie und Forscher am Astronomischen Observatorium von #Triest. Das ELT und seine hochmodernen Instrumente wie HARMONI und MICADO werden in Protocluster hineinschauen können und uns sehr detailliert über die Galaxien darin informieren. Zusammen mit den Fähigkeiten von ALMA, das sich bildende ICM zu erfassen, wird dies einen entscheidenden Einblick in den Aufbau einiger der größten Strukturen im frühen #Universum ermöglichen.